KENDRIYA VIDYALAYA SANGATHAN

MODEL QUESTION PAPER - 1

2017-18

Mathematics

Class:-X

Time: 3Hrs

Marks: 80

General Instructions

1. All questions are compulsory.

The question paper consists of 4 sections A, B, C and D.
 Section A contains 6 questions of 1 mark each.
 Section B contains 6 questions of 2 marks each.
 Section C contains 10 questions of 3 marks each.
 Section D consists of 8 questions of 4 marks each.

3. 15 minutes time is allotted for reading the question paper.

Section A

- 1. If $\sin \theta = \cos \theta$, find the value of θ , find the value of n
- 2. If the numbers n-2, 4n-1 and 5n+2 are in AP, find the value of n
- 3. If P (E) = 0.05, what is the probability of "not E'?
- 4. Write 70 as product of its prime factors.
- 5. What is the modal class of the following frequency distribution?

Age (in years)	0-10	10-20	20-30	30-40	40-50	50-60
Number of patients	16	13	6	11	27 .	18

6. In the given figure, the graph of a polynomial p(x) is given. Find the zeroes of the polynomial

SECTION B

- 7. ABC is an isosceles triangle, right angled at C. Prove that $AB^2 = 2 AC^2$.
- 8. Point P (5, -3) is one of the two points of trisection of the line segment joining the points A (7, -2) and B (1, -5) near to A. Find the coordinates of the other point of
- 9. Show that any positive odd integer is of the form 4q + 1 or 4q + 3, where q is some
- 10. Solve using substitution method

$$x + y = 14$$

$$x-y=4$$

- 11. If the quadratic equation $(k + 1) x^2 2(k-1) x + 1 = 0$ have real and equal roots then,
- 12. A quadrilateral ABCD is drawn to circumscribe a circle. Prove that AB + CD = AD+BC

SECTION C

- 13. A bag contains 5 blue balls and some red balls. If the probability of drawing a red ball from the bag is thrice that of a blue ball, find the number of red balls in the bag.
- 14. Given 15 cot A = 8, find sin A and sec A
- 15. Prove that the line segment joining the points of contact of two parallel tangents of a circle passes through its Centre.
- 16. The mean of the following frequency distribution is 50. Find the missing frequencies f1 and f2.

Classes	0-20	20-40	40-60	60-80	80-100	-Total -
Frequency	17	f ₁	32	f ₂	19	120
ricqueiter			,			,

- 17. Prove that $3 + \sqrt{2}$ is an irrational number.
- 18. The sum of the squares of two consecutive odd numbers is 394. Find the numbers.
- 19. The following table gives production yield per hectare of wheat of 100 farms of a village.

Production yield (in Kg/ha)	50-55	55-60	60-65	65-70	70-75	75-80
Number of farms	2	8	12	24	38	16

Change the distribution to a more than type distribution and draw its ogive.

- 20. Check graphically whether the pair of equations 3x + 5y = 15 and x y = 5 is consistent. Also find the coordinates of the points where the graphs of equations meet the y axis.
- 21. In the figure, O is the Centre of a circle such that diameter AB = 13 cm and AC = 12 cm. BC is joined. Find the area of the shaded region.

22. From a solld cylinder whose height is 2.4 cm and diameter 1.4 cm, a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid to the nearest cm².

SECTION D

- 23. For what value of n, are the nth terms of two AP s 63, 65, 67, _____ and 3, 10, 17, _____ equal?
- 24. If A (-4,8), B (-3, -4), C (0, -5) and D(5,6) are the vertices of a quadrilateral ABCD, find its area.
- 25. If cosec θ + cot θ = p then prove that $\cos \theta = \frac{p^2 1}{p^2 + 1}$
- 26. Draw a triangle ABC with side BC= $^{\prime}$ 6 cm, AB= 5 cm and $\angle ABC$ = 60 $^{\circ}$. Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the triangle ABC.
- 27. Prove that, if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio. Using the above result prove that Δ ABC is an isosceles triangle, if DE II BC and BD= CE

28. Rasheed got a playing top as his birthday present, which surprisingly had no colour on it. He donated this gift to a child in nearby orphanage. Before donating he wanted

to colour it with his crayons. The top is shaped like a cone surmounted by a hemisphere. The entire top is 5 cm in height and the diameter of the top is 3.5 cm. Find the area he must colour. (Take $\pi = \frac{22}{7}$). What value does Rasheed possess?

- 29. As observed from the top of a 75m high lighthouse from the sea level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships.
- 30. Find all the zeroes of the polynomial $x^4 + x^3 9x^2 3x + 18$, if it is given that two of its zeroes are $-\sqrt{3}$ and $\sqrt{3}$